Deprotonation by Dehydration: The Origin of Ammonium Sensing in the AmtB Channel
نویسندگان
چکیده
The AmtB channel passively allows the transport of NH4(+) across the membranes of bacteria via a "gas" NH3 intermediate and is related by homology (sequentially, structurally, and functionally) to many forms of Rh protein (both erythroid and nonerythroid) found in animals and humans. New structural information on this channel has inspired computational studies aimed at clarifying various aspects of NH4(+) recruitment and binding in the periplasm, as well as its deprotonation. However, precise mechanisms for these events are still unknown, and, so far, explanations for subsequent NH3 translocation and reprotonation at the cytoplasmic end of the channel have not been rigorously addressed. We employ molecular dynamics simulations and free energy methods on a full AmtB trimer system in membrane and bathed in electrolyte. Combining the potential of mean force for NH4(+)/NH3 translocation with data from thermodynamic integration calculations allows us to find the apparent pKa of NH4(+) as a function of the transport axis. Our calculations reveal the specific sites at which its deprotonation (at the periplasmic end) and reprotonation (at the cytoplasmic end) occurs. Contrary to most hypotheses, which ascribe a proton-accepting role to various periplasmic or luminal residues of the channel, our results suggest that the most plausible proton donor/acceptor at either of these sites is water. Free-energetic analysis not only verifies crystallographically determined binding sites for NH4(+) and NH3 along the transport axis, but also reveals a previously undetermined binding site for NH4(+) at the cytoplasmic end of the channel. Analysis of dynamics and the free energies of all possible loading states for NH3 inside the channel also reveal that hydrophobic pressure and the free-energetic profile provided by the pore lumen drives this species toward the cytoplasm for protonation just before reaching the newly discovered site.
منابع مشابه
Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB.
The conduction mechanism of Escherichia coli AmtB, the structurally and functionally best characterized representative of the ubiquitous Amt/Rh family, has remained controversial in several aspects. The predominant view has been that it facilitates the movement of ammonium in its uncharged form as indicated by the hydrophobic nature of a pore located in the center of each subunit of the homotri...
متن کاملIn vivo functional characterization of the Escherichia coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase.
The Escherichia coli AmtB protein is member of the ubiquitous Amt family of ammonium transporters. Using a variety of [14C]methylammonium-uptake assays in wild-type E. coli, together with amtB and glutamine synthetase (glnA) mutants, we have shown that the filtration method traditionally used to measure [14C]methylammonium uptake actually measures intracellular accumulation of methylglutamine a...
متن کاملIn vitro analysis of the Escherichia coli AmtB-GlnK complex reveals a stoichiometric interaction and sensitivity to ATP and 2-oxoglutarate.
In Escherichia coli, the ammonia channel AmtB and the P(II) signal transduction protein GlnK constitute an ammonium sensory system that effectively couples the intracellular nitrogen regulation system to external changes in ammonium availability. Binding of GlnK to AmtB apparently inactivates the channel, thereby controlling ammonium influx in response to the intracellular nitrogen status. We d...
متن کاملThe mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli.
Ammonium is one of the most important nitrogen sources for bacteria, fungi, and plants, but it is toxic to animals. The ammonium transport proteins (methylamine permeases/ammonium transporters/rhesus) are present in all domains of life; however, functional studies with members of this family have yielded controversial results with respect to the chemical identity (NH(4)(+) or NH(3)) of the tran...
متن کاملEpistatic effects of the protease/chaperone HflB on some damaged forms of the Escherichia coli ammonium channel AmtB.
The Escherichia coli ammonium channel AmtB is a trimer in which each monomer carries a pore for substrate conduction and a cytoplasmic C-terminal extension of approximately 25 residues. Deletion of the entire extension leaves the protein with intermediate activity, but some smaller lesions in this region completely inactivate AmtB, as do some lesions in its cytoplasmic loops. We here provide ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Computational Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2007